

Sensors in viticulture

Ramón Salcedo, PhD

Polytechnic University of Catalonia (Barcelona, Spain)

Agricultural Machinery Unit – Polytechnic University of Catalonia (Spain)

Site Map · Contact · Log In · @ English - Search

Agricultural Machinery Unit. UMA

You are here: Home

News

Presentation

Research and transfer projects

Agreements with companies

Training and extension

Certifications and tests

Publications and press

Developments and tools

Dosaviña

The Agricultural Machinery Unity (UMA) is a group of transfer and research that it has as central core the world of agricultural machinery, with great experience especially in the field of technology in phytosanitary products application.

The activities developed by the UMA are divided in three sections: teaching, research and technology transfer. The relationship that the group maintains with the main companies in

Suppose I want to do a fungicide treatment on this plot

So, knowing this...does it make sense to treat the entire plot equally?

The correct use of pesticides is one of the biggest challenges in agriculture

The use of pesticides in agriculture contributes to pollution of soil, water and air. The Commission will take actions to:

- **reduce by 50%** the use and risk of chemical pesticides by 2030.
- **reduce by 50%** the use of more hazardous pesticides by 2030.

In general for vineyards, air-assisted sprayers are used at a constant application rate (gal/ac).

Advantages:

- ✤ Low labor
- ✤ Controlled water consumption
- ✤ Speed
- ✤ Rational use of pesticides
- \clubsuit Fan or turbine effect

Precision agriculture: introduction

Precision agriculture: introduction

Llorens (2016)

Precision agriculture: introduction

Discontinuous variable application

Continuous variable application

LIght Detection And Ranging (LIDAR)

Sanz (2005)

LIght Detection And Ranging (LIDAR)

The general procedure is made up of four parts:

- 1. Find connectivity between nearby points
- 2. Represent geodesic paths from a reference point (bottom of the tree) to the end of all branches and leaves
- 3. Classification of points into different levels according to their distance from the reference point
- 4. Final reconstruction of the tree structure.

LIDAR for vegetation maps

LIDAR for measuring spray drift

Adaptation of variable flow rate to canopy volume

AGVANCE Project (Spain)

Variety and BBCH*		Applicartion rate (1 ha ⁻¹)		$\mathbf{S}_{\text{arrin}} = \left(0/ \right)$
		Conventional	Variable	Savings (%)
Merlot	85	266	141	47.0
Cabernet Sauvignon	75	299	179	40.1
	85	373	111	70.2
Tempranillo	75	299	127	57.5
	85	373	86	76.9

Ultrasonic sensors fitted in robots

NANO-SATELLITES

MULTIROTOR DRONE WINEVIT® 2024

WHAT DO DRONES OFFER TO PA.?

- Crop visualization at global scale (with local resolution)
- Versatility \rightarrow pocket satellites
- Higher resolution \rightarrow better discrimination
- Lower cost of operation and maintenance
- Economically viable for small farms
- Flight time can be adapted to crop physiological characteristics
- Flight when overcasted is possible
- Environmentally safe
- New technology \rightarrow big development in next years

WINEVIT

Spectral indexes

ADOPTA Project (Spain)

Chlorophyll

THANK YOU!

Sensors in viticulture

- Ramón Salcedo, PhD
- Polytechnic University of Catalonia (Barcelona, Spain)
- E-mail: ramon.salcedo@upc.edu

@umadeabupc

